On the Group Front and Group Velocity in a Dispersive Medium Upon Refraction From a Nondispersive Medium
نویسندگان
چکیده
Conventional definitions of velocities associated with the propagation of modulated waves cannot clearly describe the behavior of the wave packet in a multidimensional dispersive medium. The conventional definition of the phase velocity, which is perpendicular to the wave front, is a special case of the generalized phase velocity defined in this work, since there exist an infinite number of solutions to the equation describing the wave-front movement. Similarly, the generalized group-front velocity is defined for the movement of a wave packet in an arbitrary direction. The group-front velocity is the smallest speed at which the group-front travels in the direction normal to the group front. The group velocity, which is the velocity of energy flow in a nondissipative medium, also satisfies the group-front equation. Because the group-front velocity and the group velocity are not always the same, the direction in which the wave packet travels is not necessarily normal to the group front. In this work, two examples are used to demonstrate this behavior by considering the refraction of a wave packet from vacuum to either a positive-index material (PIM) or a negative-index material (NIM). @DOI: 10.1115/1.1668035#
منابع مشابه
Relationship between head wave amplitudes and seismic refraction velocities to detect lateral variation in the refractor
Refractor ambiguities are big problem in seismic refraction method especially in seismic engineering. There can be hidden subsurface geological phenomena such as hidden faults and shear zones which are not simply predicted by the travel-time graph or some geophysical methods. Head wave amplitudes are used to show the resolution of refractor ambiguities and the existence of anisotropy in complex...
متن کاملVelocity Modeling in a Vertical Transversely Isotropic Medium Using Zelt Method
In the present paper, the Zelt algorithm has been extended for ray tracing through an anisotropic model. In anisotropic media, the direction of the propagated energy generally differs from that of the plane-wave propagation. This makes velocity values to be varied in different directions. Therefore, velocity modeling in such media is completely different from that in an isotropic media. The vel...
متن کاملAbnormal Wave Propagation in Passive Media
Abnormal velocities in passive structures such as one-dimensional (1-D) photonic crystals and a slab having a negative index of refraction are discussed. In the case of 1-D photonic crystal, the frequencyand time-domain experiments for waves tuned to the bandgap of the photonic crystal demonstrate a positive group velocity exceeding the speed of light in vacuum (superluminal). In the case of a ...
متن کاملCompensation for Group Velocity of Polychromatic Wave Measurement in Dispersive Medium
The estimation of instantaneous frequency (IF) method is introduced to compensate for the group velocity of electromagnetic wave in dispersive medium. The location of the reflected signal can be obtained by using the time-frequency cross correlation (TFCC), following which it is used to extract the transmitted signal from the total signal acquired. The signal propagated in the dispersive medium...
متن کاملWave Reflection and Refraction at the Interface of Triclinic and Liquid Medium
A Mathematical model has been considered to study the reflection and refraction phenomenon of plane wave at the interface of an isotropic liquid medium and a triclinic (anisotropic) half-space. The incident plane qP wave generates three types of reflected waves namely quasi-P (qP), quasi-SV (qSV) and quasi-SH (qSH) waves in the tric...
متن کامل